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high-level, clOJed-loopcontrol of spacecraft THE AUTHORS DR4 W ON THElR EXPERl.E,\lCE WITH THE 
crffers considerable benefits to space-flight AUTONOMY TECHNOLOGY DE;MONSTRATION ON NASA's 
projects. Those benefits can enable whole 
new classes of missions;  however,  they are 1 DEEP SPACE ONE MISSION TO DESCRIBE THE WIDE-RAiiGING 
not  without  cost.  In  this article, we describe 
both the impact that autonomy technology I 

EFFECT ACTONOMY WlLL HAYE ON THE DEI/ELOPVENT OF 
has on spaceCratt softwan and the implica- I 
tion for the software archicecture that arise 
from  those impacts. Some of the impacts are 
inherent  in the challenging problems gener- implementation for handling  the  added  func- 
a!ly confronted in the spacecraft domain yet tionality  provided by autonomy  technologies. 
are exacerbated by autonomy technology. For instance,  in  contrast to traditional space-' 

' craft  software,  the  computation  time of many 
autonomy  technologies  cannot  be  predicted 

more flexible. Similarly. software that can 
Ti3 increase  reliability and enable  new mis- 1 react  to  unexpected  contingencies  and  oppor- 

sions.  spacecraft  5yscems  are  moving  toward  tunities will likely  have  many  branch  points, 
more wtonomous operations. In particular, so brute-force,  exhaustive  testing is not fea- 
today's  spacecraft designers need  autonomy sible. These, and many other factors. com- 
i n  cases where long communication  time plicate  the  design,  implementation,  and  vali- 
delays  make  command  and  monitoring oper- dation of autonomy  technologies. 

Overview precisely, su the  process scheduler must be 

ntions by ground-based operaton infeasible. We contend  that a well-conceived  software 
By analyzing  data  and making more deci- architecture can have significant positive 
sions 011  buard. spacecraft can handle con- ilnpact on the developrncnt of autonomy 
tinycncies  quicker and more intelligently,  can I technologies and  on  the ability to integrate 
takc sstions based o n  current data, and can 1 them  with  traditional spacecraft functions, 
react  effectively t o  ncw opportunities. such 2s at:itude control and  telemetry. 

Spacecraft designers also need  new ap- 1 While  attitudes: toward softwarc architec- 
proaches t o  spacecraft software design and 1 cures are sornetimcs disrnissivc--"it's just 

SPACECRAFTSOFTWARE. ' 

, ! .  . : ,  

boxes and arrows"-recent research  has  laid 
a rigorous  foundation for the field of soft- 
ware  architectures.' The analysis  we  present 
here,  while  not  formal,  attempts 10 discuss in 
depth  the  constraints  that the domain of deep- 
space missions  place on the design and 
implementation of autonomy technologies 
and, similarly, describe how the addition of 
high levels of autonomy affects  the  overall 
software architecture. 

The term software nrcltit&um enconl- 
p a w s  several  different  notions.  For our yur- 
poses, we consider  only architectural sivle 
and srructure. Architectural  style refers to 
computational  concepts that can be uni.. 
family applied throughout the system. For 
instance, one system  might be designed in an 
asynchronuus,  publish-subscribe  style,  while 
another uses a more  synchronous, cliont- 
server model. An architucturc's structure 
refers to  its decomposition into component 



parts. This includes specifying  the  functional 
behavior ofirldividual components and inter- 
faces between components, to indicate both 
information and control flow. For hierarchi- 
cally  structured  systems, the architecture 
specifies the levels of abstraction and how 
the  various layers are  decomposed. 

A well-defined architecture gives the soft- 
ware developer a number of advantages in  
design, implementation, testing, and main- 
tenance. From a software design  perspective, 
both  the style and structure of an architecture 

Challenges of spacewaft 
autonomy 

In general, bui!ding autonomous systems 
is a challenge.  Autonomous  systems must 
create and execute plans of action to achieve 
high-level goals. while also maintaining  the 
ability to react, in real timc, to unexpected 
contingencies. Often, they must choose be- 
tween  conflicting  goals  and deal with 
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resource conflicts. memories must  be radiation hardened, an 
The domain of deep-space missions  adds expensive  and  time-consuming  development 

use  fuel (such as for  course  corrections or 
orbit insertions) must he made in such a way 
as to gummtce that  sufficient  rescrves will be 
avaiilable for later pats of the  mission.  includ- 
ing  unexpected  Contingencies. 

Finally, computation itself is a limited 
onboard  resource. Spxeaaft  computers typ- 
ically lag several  generations hehind  com- 
mercial products, both due to  power  lirnita- 
tions and because onboard CPLs and 

are very important.  The  architectural  style  several  constraints that make  spacecraft process. 
often  greatly  influences how components  autonomy  particularly  challenging.  These I 
behave and interact with one  another. For constraints  relate to the facts that it is very Reliability. Given  the vast distances 
instance, a publish-subscribe style has impli- expensive to launch  mass into space; that  the , i involved, deep-space  missions tend to  be 
cations for the need to maintain internal state I space environment is harsh, the destinations i very long. The  Pathfinder mission to Mars 
and how a component reacts to unexpected  was a  relatively  short hop-six months 
inputs.? A well-defined architectural'struc- " ' i !$ 

ture lets us develop syskms in a modular,  dis- 

... .. 
travel.  More  typical  are  missions such as 
Cassini  (six years ro Saturn).  During this . , .Ill 

tributed  fashion, with the  expectation that extended time, the probability of unexpected 
integration will be facilitated by careful GoOD ~ c H ~ c ~  and unanticipated events is  very  high.  Prob- 
detailing of functionality and interfaces. SHOVJJ ,WE T(T smpu TO lems can arise  from  hardware or software 

From an implementation point of view,  failures, either transient or permanent,  caused 
architectural  styles can make it easier to DO S " L J ?  THINGS IN THE by design flaws or unexpected environmen- 
implement a design by providing standard- DOMAIN, = ~ o ~ p ~ g -  tal conditions. 
ized languages, code libraries, and tools tai- An autonomous  spacecraft  system must 
lored for the  particular  style. In essence, these CLUDI?VG ONE FROM DOING be able LO detect any  and all such  problems 
languages,  libraries,  and  tools  encapsulate and deal with them, at some level. This can 
patterns of  computation that [he  particular lMom range from the basic response of achieving 
architectural style needs. Common examples a sufe spacecraft state (where resource use  is 
include  languages  and  tools  for  object- minimized  and Earth telecommunications is 
oriented programming  and code libraries for I distant, and  the scientific missions  exacting: I enabled), up to autonomously dealing with 

ing). For spacecraft  architectures.  other  types 
of packages  might  be used to support deme- 
try. exception  handling.  sensor  management, 
and so forth. In addition to simplifying 
implementation.  such tools can facilitate val- 
idation  and verification, because they  them- 
selves are often reliable and well-tested. 

Finally, a well-structured architecture can 
facilitate system maintenance. Because the 
function of, and interfaces between, cornpo- 
nents are  weil-specified. we can  replace 
components without  fretting about how the 
replacements will affect the rest of the system 
(note, hnwever*  that this is  less true for tightly 
coupled systems, which is the case for many 
spacecraft systems). 

In  essence.  architectures provide con- 
straints on  how problems  should be 

interprocess communication  (message pass- 1 and that spacecraft are highly complex  and 
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approached and solved. In any  given archi- I FueI (for propulsion) is another highly lim- 

sophisticated mechanisms. 

Limited resources. Probably  the  most sig- 
nificant factor in  controlIing  deep-space 
spacecraft, either manually or autonomously, 
is  that  resources are very limited and so must 
be used with maximum efficiency. For deep- 
space missions in particular, the maximum 
available  electrical power typically cannot 
run dl the spacecraft's devices simultane- 
ously. Usually, to run one piece of equipment 
(such as a science  instrument, motor, ur 
transmirter), other  devices  must  be turned off. 
A similar situation occurs for the solid-state 
recorder (storage) devices, which for deep- 
space missions generally have insufficient 
capacity to  hold all the  relevant scicnce and 
engineering data simultaneously. 
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tecture, some things are hard  to do or express, 
and some  arc easy. A good  architecture 
should make ir simple to do  simple things in 
the domain. while not prrxludlng one from 

. .  " 

doing more complcx tasks. ' possible.  Decisions about when and how to i landmg on comets or asteroids. 
I 

the situation. Recovery strategies must con- 
sider how the solutions will affect other 
spacecraft accivities. For instance. i f  the 
spacecraft is  in the midst of a critical orbit- 
insertion activity, achieving a safe spacecraft 
state is not an option. 

Another  factor  complicating recovery 
from  failures is that, to save cost, many 
spacecraft have limited  hardware redun- 
dancy. Thus, when problems occur, the  only 
available solution might  lead  to  reduced sys- 
tem functionality. For instance, i f  a thruster 
fails, and :he spacecraft has no back-up 
thrusters, the system will have to operate in  
a degraded mode, perhaps with reduced tun1 
rate and stability. 

Spacecraft dynamics. Spacecraft are con- 
stantly  moving  and  events  are  continually 
occurring that musc be handled in a rimely 



'The most critical  challenge  imposed by 
spacecmtt  dynamics,  however, 1s chat actions 
might  have  irreversible  effects. For instance, 
if H vpacecraft misses an orbit insertion, it 
gets no second  chance.  Often,  spacecraft  sys- 
tems must take likely contingencies  into 
account. For instance, in doing an orbit inser- 
tion, the autonomy system should consider 
the  possibility  that the main engine will  fail 

behavior. at least at SOIIIL' level  of ahanction. 
In addition,  ground  personnel  must be able 
to easily  assume  control  when rhe autonomy 
software does cot operate as anticipated. 

The Remote Agent is an autonomy  tech- 
and  include commands to  prepare  the  backup ' nology  that  NASA wiL1 demonstrate-on the 
engine !such as by preheating its  compo- 1 Deep Space One mission. DS 1 ,  which  will 
nents) well in advance.  Otherwise, by the include an asteroid and cornet flyby, is  the 
time it discovers that the main engine has , first  in  a  series  of  technology demonstration 
failed, the system  will  not  have enough time 
to prepare  the b a e k ~ p . ~  

Science mission. Fundamentally,  deep-space 
spacecraft are science-delivery  platforms.  It 
does not  matter  if the autonomy system suc- 
cessfully controls the spacecraft for 90% of 
the t ime if it fails to acquire the anticipated 
science data. Given the  nature of science 
opportunitiest a deep-space  mission  is one of 
long stretches of relative  quiet  punctuated by 
short periods  of intense activity.  In such sit- 
uations, there  are usually more science 
opportunities than the mission can  accom- 
modate, so spacecraft systems must be ahle 
to prioritize  actions and use resources effec- 
tively in these critical  periods. 

Also, by its  very  nature, scientific discov- 
ery is  unpredictable.  Analysis of data leads 
to new insights, but also leads to  new ques- 
tions to be answered. Enexpected opportu- 
ni:ies often arise that are of immense scien- 
tific interest (witness the Levy-Shoemaker 
comet, the discovery of volcances on Io, or 
the  observation of the moon  Dactyl orbiting 
about  the  asteroid  Ida). It is  important to sci- 
entists that  the spacecraft be able to readily 
adapt to new mission goals. 

Sociologieal issues. Like  many  complex  sys- 
tems,  Spacecraft  systems  are  designed,  devel- 
oped.  and  validated by large teams of tech- 
nical experts. The teams might be spatially 
dispersed  and certainly have  a  wide  variety 
o f  backgrounds. Concepts and terminology 
must he shared across guups md be easily 
accessible to all. 

Autonomy technologies also affect 
ground opcrations.  Ground-operdtiuns  per- 
sonnel hove deep  expertise ill controlling, 
monitoring, 'and diagnosing spaceuaft. They 
are used to beiny able to predict, ?o a very 
h~gh level of detail, how  the spacecraft will 
act. Thus, i t  is imponarrt tha  the autonomy 
tochr~ologies bc seen to have predictable 

missions within NASA's s e w  Millennium 
Program. Other deepspace missions in the 
NMP include a Mars  surfacc penetrator 
(DS2), multispacecraft  interferometry (DS3), 
and a comet lander  mission (DS4). Because 
these NMP missions are designed for tech- 
noIogy  demonstration,  they  deemphasize  sci- 
ence objectives and so can tolerate signifi- 
cantly  more risk. On DS 1,  for example,  there 
are 12 technologies for demonstration. 

Thz R A  demonstration on DS1 occurs 
over a  two-week  period during a  thrusting- 
cruise mission phase. On DS 1 ,  thrusting 
cruise requires 

navigation, to measure the  relative  posi- 
tion and velocity  between the spacecraft 
and the target asteroid, 
attitude  control,  to  stably  direct  the  space- 
craft toward the target and orient the 
spacecraft For ground  communication, 
and 

I" . 

Figure 1. The Remota Agent components. 

propulsion, LO accelerate the spacecraft 
along its  path  to  the  target. 

Within che two-week  period,  the RA demon- 
stration will  run twice.  The first 12-hour 
phase is designed to allow the DS1 ground 
opcrations  team to gain  confidence  in  the RA 
technology. In this  phase.  the  spacecraft  will 
have continuous  antenna  coverage so that 
were anything to  go  wrong the  ground  team 
could easily reestabiish spacecraft safety. 
Also, planning will not be performed on- 
board; rather,  a fully validated  plan  will be 
uplinked to the RA and executed by  the 
EXEC. in the second six-day  phase, onboard 
planning is performed with goals designed 
to achieve  thrusting  cruise,  as  itemized 
above.  During  the  both  phases,  faults are arti- 
ficially  injected into the RA so as to demon- 
strate closed-loop control and the resulting 
robust  execution. 

The RA components. The RA consists of 
three major components? The Smart Ekecu- 
rive (EXEC) robustly  executes plans and  fault 
recovery  strategies,  monitors  constraints  and 
runtime resource usage, and coordinates  the 
top-level commanding loop. The Planner/ 
Scheduler (PS) merges  ground-supplied mis- 
sion goals with  the current spacecraft state 
and produces a coordinated set of time- 
delimited  activities  that the EXEC performs. 
The Mode Identification and Reconfiguru- 
rion (MIR) component  performs  modei- 
based fault  diagnosis  based on the monitored 
spacecraft state and, when  requested by the 
EXEC in response to a fault,  provides  plau- 
sible  commands to recover to the  desired 
state. 

The  three RA components are closely 
coordinated (Figure  1). In  the  top-level  corn- 
mand loop that supports autonomous plan- 
ning, the EXEC builds plan  requests  based 
on the current spacecraft state,  issues a plan 
request to PS (which then merges  the  state 
with  the mission goals), receives a reply from 
PS with the  completed plan. and robustly 
performs the activities  coordinated by the 
planner. [fa fault occur\, the EXEC builds a 
recovery  request  with  the desired spacecraft 
state. requests a recovery from M I R  that will 
restore the desired  state, receives  a reply 
from MIH with a command for recovery (if 
one exists), performs the recovcry, and con- 
rinucs  with the plan  activities. 

The RA components interact  with ~ C I U B -  
tors. sensors, and planning expcrrs. Actttrr- 
tors perform actions based 011 cornmands. 
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The actuaton themselves can he as low-level 1 commands to restorr: the spacecraft to a safe I implications that  wc do not describe here.j 
LIS a single switch or as  high-level  as  the atti- state  where fuel and power resouces  are 
tude control system  (where a typical com-  maintained,  where thermal constraints  are I Weuk cuupfing. Thc RA archltecture is fun- 
mand  would  be  to orient that spacecraft at a  satisfied.  and  where  communication with danlentally  weakly  couplcd.  The  architecture 
given celestial body). Sensors provide data ' Earth  is established. Many ofthe commands 1 achieves this weakcoupling with  publish-sub- 
that can be combined in numerous ways  to 1 issued  will  not be confirmed, so robust exe- scribe, query-response message  passing  for 
ascertain the  state of the  spacecraft. fkrnning cution relies on the detailed crafting of the 
eqerrs provide estimates of resources (eIec- I command sequences. 
trical power, thruster propellant, turn dura- 
tion) required to perform spacecraft actions. 

Standard tlight software components. 
Standardflight sofrware (FSW) for deep- 
space  missions  (those  beyond  lunar  orbit) 
typically  have an onboard. open-loop, tem- 
porally-based command sequencer.  Given a 
list of time-tagged  commands. the sequencer 
issues the commands  at the specified times 
without  regard  to their results. Only after the 
results have  been teiemerered to Earth can 
ground personnel ascertain  the  sequence's 
success. FIight software  engineers achieve 
robust execution not  with runtime flexibility 
but rather by detailed  hand-crafting of the 
sequences based  on accurate spacecraft-per- 
formance  models  and by extensive  tests in 
suitable test environments. 

At a very abstract  level,  standard FSW 
consists of drivers,  managers,  and  subsys- 
tems ( s e e  Figure 2). Drivers are  essentidly 
the software device drivers that operate at the 
level of bus transactions (memory accesses, 
for example). Managers encapsulate bus 
communication (so that devices on different 
hardware buses  use a simjlar software  inter- 
face), produce telemetry, utilize nonvolatile 
memory for persistent  parameters.  close 
some hard real-time  loops,  and  generally 
map to a single device driver. Managers pro- 
vide an increment in the software's hierar- 
chical  structure  because  there  are usually 
some  interdevice  interactions. Subsystems 
coordinate activities involving several man- 
agers and  close  higher-level  control loops. 
The flighc software does not explicitly rep- 
resent all subsystems.  Subsystems  such as 
navigation, propulsion, and science gener- 
ally require  ground  personnel for closed-loop 
control (idthough for DSl , one technology 
scheduled for validation is onboard,  au- 
tonomous  optical  navigittlon). Other subsys- 
tem,  such as attitude control (ACS) and  fault 
protection (FP), are  explicitly  representcd 
and do exhibil closed-loop  control. 

The fault-protection subsystem is  charged 
with ensuring the spacecraft viability. Tf the 
spacecraft  state  indicates an off-nominal, 
dangerous situation. fault prntection issues 

The attitude-control subsystem  must sta- 
bly point the spacecraft and its devices to- 
ward desired celestial targets. For solar-el=- 
tric powered  spacecraft,  the  solar  panels must 
face the sun (except when alternate power, 
such as a battery, is available); cameras  must 
point toward  planets for science  obsetva- 
tions; and antennas must  aim at the Earth or 
other communication sites. such as a lander. 

INDEED, THE smm a- 
SOURCE CONSTlUNlY ON 

DEEP-SPACE MiSSlQNS 
SUGGEST THAT A SINGLE 

ARCHITECTURE MZGHT NOT BE 
SVFF1CIE;liT FOR THE VARlElY 

OF MISSIONS. 

Closed-loop control is possible  because stel- 
lar-reference  units and  sun semors,  com- 
bined with spacecraft  geometry  measure- 

all communicxion within the RA and  between 
the RA and the DS 1 flight software. (Com- 
munication  between the RA and DS1 flight 
software  changed  after the March  1997  redi- 
recti0n.j The need  for a weakly  coupled archi- 
tectural style arose from a number of goals: 

* 

merits and  trajectory  proJections,-provide the 
relative positions and orientations between 
spacecraft  hardware  components and the 
celestial targets. Rotation rate  and accelera- 
tion  sensors  provide  the  basis for precise, sta- 
ble pointing. 

' 

! 
RA on DS1 architectural issues. The RA 
on DSI provides onboard, high-level,  closed- 
loop  control of a spacecraft, while also 
replacing :hc standard FSW components of 
Fault-protection, command sequencing, and 
portions of ground-based planning. Some 
architectural issues arise from  both  the  pur- 
ticulars of the RA and  the  fundamental  nature 
of closed-loop  control. (The discussion of 
these issuas that  follow4  is  based  on archi- 
tectural issues that applied prior to March 
I997 when  the RA was  the  nominal control 

Minimally impact FSW components. 
Because the RA is functionally similar to 
standard  ground-based  command se- 
quencing  and  onboard  fault  protection,  the 
FSW components need only provide addi- 
tional feedback directly to the RA, rather 
than into  the  Earth-bound telemetry 
stream. The  distinction  between  the 
dynamic  command  sequencing  performed 
by  the RA and the time-tagged  commands 
in standard FSW does not significantly 
affect FSW command interfaces. 
Enable concurrent, largely independent 
development teams. Interfaces  were spec- 
ified  based on little shared code other than 
the  messaging  infrastructure. Thus, there is 
little  serialization of the development 
process  while  waiting  for a large  amount of 
infrastructure to be provided.  Instead, the 
development teams  develop their own 
infrastacture, customize it for the  team's 
own  needs,  and  proceed  with the work of 
providing  their  component's  functionality. 
Suppurt multiple irnplementation lata- 
guages. While the  non-RA  flight  software 
is implemented in the C programming 
language, the RX is implemented in  
CommonLisp  (Harlequin,  inc. supplied 
the  flight  version). The choice of Lisp was 
based  both on its  natural support for RA 
technologics arld the  fact that the RA pro- 
totype had  been  written in Lisp (and the 
compressed  developnisnt  schedule o f  
DSI prevented significant rewrites of 
existing code). 

The DSI developrncnL soCtware team orig- 
inally believed that a weakly  coupled archi- 
tecture supporting these three  goals  would 
enable the DS 1 RA t o  he produced  on the com- 
pressed schedule and within  the cost-capped 
limitations that face DSI. However.  not  all 

subsystem for DS 1 .  The post-March rrdi- spacecr&  autonomy  architectures shcluld be 
redon, whereby the l iA was rescoped as a I , weclkly coupled. Rather, the linlited rcsourccs 
two-week experiment, had architectural 1 on spacecraft suggcst that strong coupling, 
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while maintaining other architectural  featurcs I Moddarity. Autoaorny affects rnodulanty tially thc opposite or encapsulation-in- 
such as modularity, is highly  desired.  because  autonomy systems tend to cmploy  a i creased visibility tends io expand interfaces 

fications between the RA and the standard 1 ally designed. developed. and delivered,' increased visibiiity therefore  suggests 
FSW on DSI is highly. By recursive, we I which is a highly  local view. For example, a architcctures that support  model-based, 
mean that  two  subsystems need to know high-level autonomy system such a5 MIR 1 declarative programming. The models  both 
about  the  interfaces  of the other. For exam- 1 uses inputs from  numerous, sensors, models 

1 global view whereas modularity demands by making information more accessible 
lnretface specification. The interface speci- that software components can be  individu-  rhrough the Interface. 

ple, the RA commands attitude control and 
attitude  control  responds by invoking sensor 
update functions specified in  the RA inter- 
face.  Avoiding  recursive  interfaces is impor- 
tant for modularity concerns in light of 
closed-loop  control  and can be  achieved  with 
simple polling or callback patterns. Non- 
functional requirements. Nonfunctional 
requirements are those system requirements 
not direcrfy related to system fun~tiondity.~ 
These requirements capture the shared con- 
text within which development will occur. 
They  include  shared  models, cools, andcode. , 

o€ sp&ecraft  devices  and systems, the envi- 
ronment and  Its physical interacticns, and 
inference engines to infer some  aspects of 
the spacecraft's state. Modularity, on the 
other hand, dictates that  spacecraft devices 
and systems should contain their  own  mod- 
els, and  their  detailed operations should be 
opaque to higher-level systems. 

Consequently, the key to achieving mod- 
ularity in  light of autonomy is to split  the 
autonomy  system into several  parts: 

constrain and formalize  the  visibility  (there- 
by preserving  modularity and encapsulation). 
while  declared-model  instances  maintain  the 
information about state  and behavior in  an 
accessible form. 

I 
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i r , bility  because such systems need to have  a 

a  low-level part that contains models and 1 global view of the lower-level software. 

Contlgurability. For reasons of reliability 
and resource constraints, spacecraft require 
high  levels of configurability. Three general 
areas of confiprability are considered here: 
fault protection, resources, and  structure. In 
general, autonomy systems affect configura- 

Mainly as a consequence of the  weakIy cou- I data-provided  by device engineers, 
pled architecture, RA development did not * a high-level part with configurability, Fault promtion. Autonomy systems affect 
incorporate many of the relevant nonfunc- commandability. goals, and  global nod- fault-protection configurability because an 
tional  requirements. For instance. in the area els-provided  by system engineers, and appropriate exception handler is likely to be ' 

of  models, the various RA components used a skew level  with  the inferencing  en- 
inconsistent state transition  diagrams: in the  gine-provided  by autonomy software 
area  of tools, different C and Lisp compilers I engineers. 
were used; in  the area of code, multiple ver- 
sions of the  same  functions  were  imple- 
mented. This lack of adhering to nonfunc- 
tional requirements significantly affected 
DS 1's development.  The  impact was felt 
mainly during the software-integration 
process,  which  quickly  exposed  inconsistent 
assumptions. 

Arthitwtural impacts and 
implications 

The challenging nature of spacecraft and 
the ambitious goals of autonomy systems 
significantly a t k t  spacecraft  software. 
Some impacts arise primarily from space- 
craft's challenging nature hut are exacerbated 
by autonomy systems. Others are  due pri- 
mari!y :o autonomy itself. In  the following, 
we describe thc impacts and implications  that 
autonomy  can  have cn spacecraft software. 
We don't irltend.  however, to provide archi- 
!wturd solutions to di the impacts  described. 
Indeed. the severe resource constraints on 

Visibility. Autonomy systems affects soft- 
ware visibility by requiring that state and 
behavior information be  both present and 
accessible in the  software for use by  the 
autonomy  software's deliberative compo- 
nents. For example, when a planner is in- 
volved,  it is often not enough to  have a soft- 
ware component that runs a  state-transition 
diagram.  Rather, the state-transition  diagram 
needs to be explicitly represented and thus 
accessible to the  planner.  Visibility is essen- 
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dr!q7-5paCK mission.< wggcst tnnt  a single 
architectup::  might  not he sul'ficient  for all I '," Managers 
types of  missions.  Highly customizablc and 
reusable architectural t'rarneworks are an ---- - . . ~  

active  topic in <pacecraft software design. Figure 2. Standard flight softwore components. 
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selected based on global information and 
because  the  number and scape of the provided 
exception  handlers needs to incmse to sup- 
port  enhanced  robustness. For example, a star 
tracker  might  prcduce bad data  because  &her 
the tracker itself  ha5 failed or because the 
communication bus (to or from the tracker) 
has  failed.  Global  information  about  whether 
other devices on the same bus  had similar 
problems couid resolve the ambiguity and 
point to the proper recovery strategy. Con- 
figurability implies that a  particular  excep- 
tion handler  need  not be statically chosen at 
design time but can  be installed at runtime 
based  on  spacecraft state or mission  phase. 

The  software  architecture  thus needs to 
~ ~ p p ~ r t  the dynamic association of excep- 
tions  with exception handlers. This  needs to 
be  dune  respecting modularity, however, 
which requires that exceptions and  excep- 
tion handlers be defined locally (only the 
component can h o w  the context in  which 
an exception  happens  and which particular 
handlers apply). 

Resourcers. Aumnomy systems affect 
resource configurabihty because r, ~suurces 
must bc explicitly  represerlted to allow cpti- 
mal runtime allocation and ph-r ime dclih- 
eration. Resource allocation can be of many 
types-the most common is I'oI the resource 
tu be used exclusively by a specltiecl sub- 
system. Other resource types  include nego- 
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tinted or prioritized resources. As with 
Exception handlers. configurahility implies 
that  the  basis for allocation need  not  be stat- 
ically chosen  and  might be based on  both 
local  and global information. 

Consequently,  the  software  architecture 
should explicitly model spacecraft resources 
and  provide resource managers that serve as 
the brokers  for resource-allocation requests 
and as the protectors against resource over- 
subscription. 

Stmctuml. Autonomy systems affect struc- 
tural configurability because global  space- 
craft models can better isolate failed compo- 
nents  and because robustness in the face  of 

fcrent activities, derived from high-level ' components  snd to vibualize [he execution 
goals, at different  times.  Examples ofdecp- 
space mission activities are  launch  deturrtblr: 
and checkout,  thrusting Lruise,  and  encounter. 

The $oftware  architecture thus should 
avoid,  where possible. a priori limitations on 
the computational resources allocated to  any 
particular component. Like other resources, 
computational  resources  should be explicitly 
modeled  and allocated dynamically. 

I Integration. Autonomy systems affect inte- 

of plans.' Thcse tools let users  casiiy get 
gcstalr VICWS af the  overall sys:zrn behavior 
and interactively investigate particular prob- 
lematic aspects. 

Interactions between components should 
thus tX: made explicir, todelimit the scope of 
changes.Accessibility to the  runtime execu- 
tion o f  Components  is  important  for visual- 
izing and analyzing system behaviors. Ide- 
ally, components should log and timestamp 
all their state  transitions to provide a  com- 
plete picture of the system execution. gration because autonomy technology fun- 

damentally  provides  closed-loop  control, 
which requires lower-level software to pro- ' Testing. The  expense of spacecraft failure 
vide  feedback for the  autonomy  system. This 1 dicrates that spacecraft  software be thor- 

faults requires  that  components be readily I introduces a necessarily tight coupling 1 oughly tested prior to use,  which is typically 
replaced.  Structural  configurability allows 
for different components to be  employed in 
response to different requirements, faults, or 
resource  limitations. An example is to  replace 
a faulty  physical gyroscope with an inferred- 
state, virtual gyroscope. 

A wider variety of spacecraft  software 
components thus need to allow their struc- 
tural subcomponents to change dynamically. 
Large numbers of plug-compatible compo- 
nents  should  be provided to facilitate robust 
operation. This also has implications for vis- 
ibi!ity, because the different components are 
likely  to  have different models,  in terms of 
accuracy, resolution. functionality, etc. 

Asynchronousity. Spacecraft, by their na- 
ture and in spite of our best engineering 
efforts. are event-based. asynchronous sys- 

I between  the  higher-  and  lower-level  compo- 
nents, making it difficult to  develop  and  test 
components independently. ! Consequently, the software  architecture 
should  forbid  recursive interface definitions, 

terns.  Faults  occur,  and  those  faults  are  always  and  avoid  modeling  of  !ow-level  components 
asynchronous. Sensor states change based  on  within  higher-level components. Doing this, 
actuation;  those  changes  are  asynchronous  and  having  well-specified  interfaces, in- 
owing to various sources of indeterminacy. creases the probability of producing fulIy 
The environment is unpredictably rife with functional, modular, tested components for 
interesting  scientific events like volcanic I the integration process. 
explosions that are always asynchronous. 

I Therefore, accurate software modeling of 
this inherent asynchronousiry requires that 
the software use event-based multiprocess- 
ing with a preemptive  scheduler.  Event-based 
processing ensures that external events map 
accurately  into  software  events. Multipro- 
cessing is required because events arise inde- 
pendently and simultaneously from different 
sources.  Preemptive  scheduling  acknowl- 
edges that some evcnts are more important 
than others and that there cannot be one 
processor for  each source of events. 

Dynamism. Spacecraft exist in  a dynamic 
environment and are c x p e c t a t  to perform dif- 

Tools. A good set of tools can  make  any soft- 
ware system  easier to develop, rest, and 
maintain.  This is particularly true of auton- 
omy technologies, which systems typically 
have complex  interactions  among  compo- 
nents. For example, configuration manage- 
ment tools can be used  to  increase  the likeli- 
hood  :hat changes in one part of the  system 
will be propagated to other affected parts. 
Visualization tools can help in understand- 
ing  system  behavior. T h ~ s  can  be difficult to 
do manually, due to large  amounts of data 
and the asynchronous nature of the process- 
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I ,  

several times  more  time-consuming and 
expensive as creating the software initially. 
The  added  complexity and functionality of 
autonomy  technologies  compounds  this prob 
lem. There are aspects of the software archi- 
tecture.  however,  that  can facilitate this task. 

Unit testing. As discussed earlier, autonomy 
systems tend  to  be  highly coupled. Thus, to 
thoroughly  unit-test an autonomy  component 
(such as the EXEC), system designers need 
to know  not  only  how it functions internally, 
but also how it responds to the behavior of 
other system components.  Thus, they  must 
often  be able to embed the  component  within 
rhe system, which  is generally not possible 
because the various  system components are 
being developed concurrently. 

The architecture thus should  allow  system 
designers LO stub out individual components 
and replace them with functionally equiva- 
lent  (but simpler) modules. A message-based 
publish-subscribe  architecture.  such as is 
used on DS 1, makes it relatively easy to 
replace one component with another. 

Sirnulurion. Because spacecraft hardware is 
a scarce resource, and is typically not  even 
available duricg software development, ade- 
quate hardwarc simulations are essential to 
testing.  Different components, however,  have 
different simulator requirements.  Some,  such 
as .4CS, need  to simulate dynamics;  for  other 
corr~punents, kinematic sirnulztion suffices. 
In s p m  of this, all simulations should be 
based on consistent hardware  models. 

Therefore, a single. multiresolution sirn- 
ulatur  should be used, allowing scaling of the 
simulation's  fidelity. The slrnuiator should 

ing. For instance. for DSI, we d&oped 1 ;so support lkult injection and  the Ahllity to 
tools to visualize  the  message traffic between 1 Jynarnlcally  change thc .;tale o f  simulated 
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level aspects of the autonomy system, be- ' demonstration on DSl painfully suggests 
cnusedeep-space  missions are typically  char-  howevcr,  autonomy  technology hns a signif 
acterized by long  periods of inactivity in  icant effect on spacecraft software tha 
which  little of interest to higher-lcvel com- I should not be ignored. While many  of  tht 

I 
ponents occurs.. 

Formal Verification. A spacecraft can 
encounter  a  huge  number of possible scenar- 
ios-much larger than can be tested  by trial 
and error. Formal verification  methods can be 
used to significantly  reduce  the  develop-test- 
debug cycle for  complex  spacecraft  systems. 
For instance, in DSI aspects of the EXEC 
inference engine were model  using  temporal 
logic  and verified using model checking.* 
Similarly, a designer can formally  represent 
the domain models created by the spacecraft 
developers  (for  example,  the models used by 
PS or MIR) and verify  properties  of the mod- 
els (such as that the MIR models will not 
exhibit false positives or false negatives). 

To apply such formal methods, software 
components  must have well-specified 
semantics and explicit  requirements  and 
specifications (so they can be checked auto- 
matically). The desire for  formal  verification 
also places constraints on the models used 
by the autonomy technologies - languages 
that are too expressive  may be difficult,  if  not 
impossible, to verify  automatically. 

technology  for  present  and  future  generations 
o f  spacecraft  cannot be overestimated.  High- 
level, closed-loop control  based on sophisci- 
cated model-based. fault-tolerant, config- 
urable, and dynamic software architectures 
will Ict NASA pursue  space  missions  that for 
Irchnological or financial reasons it  could 
not otherwise attempt. Spacecraft systems 
that exhibit P significant amount of auton- 
omy have  the  potential of bcing both  more 
rcliable and more  powerful  than those based 
on  standard  flight software. 

effects exist to  a  lesser  degree in curred soft 
ware architectures.  they are exacerbated b] 
autonomy systems. Awareness of  thest 
impacts and a  willlngness  to  reexamine tht 
shortcomings of both spacecraft softwart 
architectures  and  autonomy  implementations 
will be a  weicomed, needed result of the DS I 
experience. 
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